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Today, most graduate students and
postdocs would find it difficult to
imagine a time when sequence data-
bases and search tools were not a
ubiquitous and accessible part of the
research landscape1. I’m not that old
but, even during my first year of
college, the only sequence ‘database’
available was a thin book containing
65 tRNA and 5S RNA sequences
(mostly from microorganisms) to-
gether with a smattering of short
samples of RNA from a few bacterio-
phages and viruses2. The first mam-
malian mRNA sequence to be deter-
mined, rabbit b globin mRNA,made
the cover of Cell in 1977, and papers
describing the coding sequence, the
59 untranslated region and the 39 un-
translated region merited three sep-
arate publications in the issue3–5!
Students entering graduate school at
that time might still expect to receive
a PhD for cloning and sequencing a
single cDNA – now you can’t get
one for sequencing a million!

GenBank6 was not set up until
1982 (Ref. 7) and, during the early
days, was distributed to university
computing centers four times per
year on magnetic tapes. By the time
I needed to do my first homology
search in graduate school, GenBank
contained a whopping 2427 se-
quences (compared with ~2 532 359
available today), most of which were
typed in manually from journals (or
from printed,hard-copy submissions)
by GenBank curators. Luckily, against
all odds, I got an informative ‘hit’with
my very first query sequence8 and
that experience profoundly altered
the future direction of my career.

The term ‘bioinformatics’ is a
fairly recent invention, not appearing
in the literature until around 1991
and then only in the context of the
emergence of electronic publishing9.
I think that the current concept of
bioinformatics was best described as
the convergence of two technology

revolutions: the explosive growth in
biotechnology, paralleled by the ex-
plosive growth in information tech-
nology10. This is illustrated, in an
uncanny way, by the fact that both
the size of GenBank and the power
of computers have been doubling at
about the same rate (every 18–24
months) for many years (Fig. 1).

The term bioinformatics still car-
ries with it enough hype to make in-
vestigating ‘biology with computers’
seem like the cutting edge. However,
some of my role models when I was
a graduate student (Margaret O.
Dayhoff, Russell F. Doolittle,Walter
M. Fitch and Andrew D. McLachlan)
had been building databases, devel-
oping algorithms and making bio-
logical discoveries by sequence analy-
sis since the 1960s (see Refs 1, 11),
long before anyone thought to label
this activity with a special term (if
anything, it was called ‘molecular
evolution’). Even a relatively new kid
on the block, the National Center for
Biotechnology Information (NCBI),
is celebrating its 10th anniversary this
year, having been written into exis-
tence by US Congressman Claude
Pepper and President Ronald Reagan
in 1988 (Ref. 12). So bioinformatics
has, in fact, been in existence for
more than 30 years and is now 
middle-aged. This is, of course, a
time of life for reinvention and re-
newal, and I will describe some of
the challenges and opportunities that
this discipline faces today.

Practitioners and training
Bioinformatics is still a somewhat
nebulous term that can mean anything

from bar-coding samples in an indus-
trial laboratory to hypothesis-driven
research. Apart from the obvious
data management applications of bio-
informatics, computational biology
research is divided into two main
schools: the analysis and interpre-
tation of data and the development of
new algorithms and statistics (you
will find examples of both schools in
this guide). Most current practition-
ers are still self-taught because uni-
versity departments of computational
biology do not yet exist. Other types
of training programs are limited in
number and scope13, although sev-
eral excellent, practical, short courses
[such as the one at the Cold Spring
Harbor Laboratory (http://nucleus.
cshl.org/meetings/98c-ecg.htm)] are
offered periodically. Therefore, the
supply of ‘skilled labor’ in bioinfor-
matics is inadequate, and most organ-
izations must be willing to provide
on-the-job training. Market forces
have responded to this labor supply
problem by the creation of several
small companies that provide bio-
informatics products and services,
mostly for industry, so large compa-
nies now have the option of out-
sourcing some of their bioinformat-
ics needs to third parties.

Nevertheless, there is an urgent
need to train the next generation in
a more formal, academic manner by
establishing training programs in uni-
versity departments with a ‘critical
mass’ of faculty and adequate finan-
cial support. Appropriate training at
the undergraduate level is also to be
fostered and supported.One encour-
aging sign is the influx of physicists
into biology.

For those who want to teach
themselves, several excellent books
stressing both practical14 and theo-
retical15–17 aspects of computational
biology have recently appeared. I
would also recommend that compu-
tational biologists obtain a working
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knowledge of molecular evolution
and structural biology in order to
understand and interpret sequence
data fully.

Sequences and beyond
Most of the articles in this guide con-
cern the analysis of sequence data
and, for a long time, bioinformatics
has been virtually synonymous with
sequence data management and
analysis. This activity has reached an
impressive new level in comparative
genomics applications (see the article
by James Lake and Jonathan Moore
on pp. 22–23). However, I believe
that sequence analysis alone is too
limited a definition and scope for
the field of computational biology. I
will return to this issue later, but first
I will consider some trends and chal-
lenges in the investigation and expli-
cation of sequence data.

Even before the emergence of
complete genomes and large
expressed-sequence tag (EST) sur-
veys18,GenBank [and its counterparts,
the European Molecular Biology

Library (EMBL) Data Library and 
the DNA Database of Japan] had
become a large, complex and inter-
nally redundant sequence archive
that required considerable experience
and/or a primer19 to use it most
efficiently and effectively. Many prac-
tical tips on this subject are discussed
in this guide. One of the challenges
and necessities for the future is to
reorganize and streamline the data
for more efficient use.The NCBI, for
example, has undertaken a ‘reference
genes’ project, in part, to address this
issue (J. Ostell, pers. commun.).
Countervailing forces, however, are
making this task more arduous and
more urgent. The daily release of
‘unfinished’ sequences onto numer-
ous Web sites makes it extremely
difficult for biologists to maintain a
current and comprehensive view of
available data, despite the fact that
‘consumer guides’ to these Web sites
have been published and are reason-
ably helpful20.This situation is going
to get even worse, as there is a move-
ment towards a vast acceleration in

the production of unfinished, frag-
mentary (assembled shotgun) se-
quence data from genome sequenc-
ing laboratories21. Biologists will
require new software tools (and ex-
perimental validation resources) to
maximize the utility of these data.

Even for ‘finished’ (i.e. highly
accurate, contiguous sequence) data,
there are serious issues with annota-
tion that affect our ability to rely on
consistent, up-to-date and quality-
assured information about genes and
genomes.These issues have been de-
scribed recently22 and it is unnecess-
ary to reiterate them here. Suffice it
to say that annotation, particularly
gene prediction, remains a challeng-
ing problem for genome interpre-
tation (see the article by David
Haussler on pp. 12–15).

New directions
I believe that the most exciting
frontier is at the interface between
computational and high-throughput
experimental biology.For many years,
there has been an ‘impedance mis-
match’ between the rapid output of
computational predictions and the
ability of traditional experimental
methods to test and verify these
predictions. Through the develop-
ment and application of new gene
expression technologies, for example,
‘wet bench’ biologists can produce
functional information about gene
products almost as rapidly as com-
putational biologists can analyse the
underlying genomes (see the article
by Michael Brownstein et al. on 
pp. 27–29). There are tremendous
challenges and opportunities to be
found here, and much new biology
to be discovered.

Finally, I don’t think that com-
putational biologists should ignore
the fields of genetic epidemiology
and evolutionary genetics. In the past,
these have been rather small and
insular specialties. But, once again,
new technology is shortly going to be
‘raining down’2 SNPs (single nucleo-
tide polymorphisms) upon us23, and
statistical and computational analysis
of the relationships between detailed
genotypes and complex phenotypes
will play a very large part in the future
of mammalian and plant biology24,25.
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Fig.1. Cumulative growth of biomedical information and computing power.MEDLINE (purple line)
is the bibliographic database of the US National Library of Medicine (http://www.nlm.nih.gov/Entrez/
medline.html) and currently contains .10 million records derived from published articles in .3900
biomedical journals.Articles categorized under the ‘G5’ Medical Subject Heading (MeSH) of ‘mol-
ecular biology and genetics’ (blue line) total nearly 1 million.The total number of DNA sequence
records in GenBank (red line) is .2.5 million (data from ftp://ncbi.nlm.nih.gov/genbank/gbrel.txt).
Note that there are now more sequence records in GenBank than there are related publications
in the literature, indicating an important milestone and an increasing gap in our lack of understand-
ing of the functions of these sequences. Hopefully ‘functional genomics’ technologies will help us
to narrow this gap.The line representing the number of transistors per chip (green line) refers to
Intel™ microprocessors and illustrates Moore’s Law, which refers to the exponential growth rate
of computing power (data obtained from http://www.physics.udel.edu/http://wwwusers/watson/
scen103/intel.html). The number of mapped human genes (orange line) is currently .30 000
(Ref. 26 and http://www.ncbi.nlm.nih.gov/genemap).The number of three-dimensional protein
structures in the Protein Data Bank (pdb) (pink line) is currently ~7500 (http://www.pdb.bnl.org).
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The amount of biological information
accessible via the World Wide Web
(WWW) is truly astonishing, and the
volume of data is increasing at a fast
pace. It is important for the bench sci-
entist to have easy and efficient ways
of wading through the data and find-
ing what is important to his or her research.Although
one can browse the data, a far more efficient access
method is to perform a search. Depending on the type
of data at hand, there are two basic ways of searching:
using descriptive words to search text databases or
using a nucleotide or protein sequence to search a
sequence database.This article focuses on the former;
see the articles by Stephen Altschul (pp. 7–9) and
Steven Brenner (pp. 9–12) for information about
sequence-based searching.

Here, I will discuss three tools – Entrez, the Se-
quence Retrieval System (SRS) and DBGET – that allow
text searching of multiple molecular biology databases
and provide links to relevant information for entries that

match the search criteria (see the URLs
box). Examples of basic and advanced
search strategies are also included.
Although many databases that can be
accessed with text-based searching will
not be discussed here, the search strat-
egies presented are broadly applicable

and can be used to search many organism-specific
resources, such as the Saccharomyces Genome Database
(SGD)1 and the Mouse Genome Database (MGD)2.

These retrieval systems are indispensable to the sci-
entist in search of information. In using any of these sys-
tems, queries can be as simple as entering the accession
number of a newly published sequence or as complex
as searching multiple database fields for specific terms
(see Box 1 for search concepts). The advantage of
Entrez, SRS and DBGET is that they not only return
matches to a query, but also provide handy pointers to
additional important information in related databases.
The three systems differ in the databases that they
search and the links they make to other information.
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As the amount of biologically relevant data is increasing at such a rapid rate, knowing how to

access and search this information is essential. There are three data retrieval systems of particu-

lar relevance to molecular biologists – Entrez, Sequence Retrieval System (SRS) and DBGET.


